This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902189982

Potassium Fluoride as an Efficient and Reusable Reagent for the Synthesis of *N*,*N*-Dialkylsulfonamides *via Aza*-Conjugate Addition Reaction Under Microwave Irradiation

Alireza Hasaninejad^a; Abdolkarim Zare^b; Abolfath Parhami^b; Ahmad Reza Moosavi-Zare^b; Raheleh Bargebid^c; Mohammad Hassan Beyzavi^c; Ali Khalafi-Nezhad^c; Azam Arghoon^b; Maria Merajoddin^b; Sayyed Ali Moosavi^b; Abdoreza Dara^b; Mohsen Shekouhy^a

^a Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, Iran ^b Department of Chemistry, Payame Noor University (PNU), Bushehr, Iran ^c Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran

To cite this Article Hasaninejad, Alireza , Zare, Abdolkarim , Parhami, Abolfath , Moosavi-Zare, Ahmad Reza , Bargebid, Raheleh , Beyzavi, Mohammad Hassan , Khalafi-Nezhad, Ali , Arghoon, Azam , Merajoddin, Maria , Moosavi, Sayyed Ali , Dara, Abdoreza and Shekouhy, Mohsen(2009) 'Potassium Fluoride as an Efficient and Reusable Reagent for the Synthesis of *N*,*N*-Dialkylsulfonamides *via Aza*-Conjugate Addition Reaction Under Microwave Irradiation', Organic Preparations and Procedures International, 41: 4, 291 – 299

To link to this Article: DOI: 10.1080/00304940903077949 URL: http://dx.doi.org/10.1080/00304940903077949

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Potassium Fluoride as an Efficient and Reusable Reagent for the Synthesis of *N*,*N*-Dialkylsulfonamides *via Aza*-Conjugate Addition Reaction Under Microwave Irradiation

Alireza Hasaninejad,¹ Abdolkarim Zare,² Abolfath Parhami,² Ahmad Reza Moosavi-Zare,² Raheleh Bargebid,³ Mohammad Hassan Beyzavi,³ Ali Khalafi-Nezhad,³ Azam Arghoon,² Maria Merajoddin,² Sayyed Ali Moosavi,² Abdoreza Dara,² and Mohsen Shekouhy¹

¹Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr, Iran

²Department of Chemistry, Payame Noor University (PNU) Bushehr, Iran ³Department of Chemistry, College of Sciences, Shiraz University Shiraz, Iran

N,N-Dialkyl derivatives of sulfonamides are significant due to their potential applications as anti-ulcer, antidepressant, anti-emetic analgesic, psychostimulant and anti-inflammatory agents.¹ Aza-conjugate addition of sulfonamides to electrophilic double bonds can be a useful synthetic route toward N,N-dialkylsulfonamides. Indeed, to the best of our knowledge, this transformation has scarcely been studied in the literature. Reagents such as $Al_2O_{3,2}^2$ $ZnO_{3}^{3}MgO_{4}^{4}K_{2}CO_{3}^{5}$ and PBu_{3}^{6} have been applied to achieve *aza*-conjugate addition reaction of sulfonamides. However, most of these reagents are useful for the synthesis of N-alkylsulfonamides but not of N,N-dialkylated adducts.^{2–5} Therefore, it seems highly desirable to develop an efficient reagent for the preparation of N,N-dialkylsulfonamides. Solvent-free organic reactions have become as a useful protocol in organic synthesis.^{7,8} The utilization of microwave irradiation coupled with solvent-free reaction conditions, provides chemical processes with special attributes, such as enhanced reaction rates, higher yields, easier work-up, better selectivity, and improved ease of manipulation.^{7,8} KF immobilized onto supports possessing high-surface area or accompanied with other reagents has been extensively used in organic synthesis;⁹⁻¹⁹ however, there are only a few reports on the applications of KF itself as reagent in the literature.^{20,21} In extension of our previous studies

Received August 22, 2008; in final form April 24, 2009.

Address correspondence to either Alireza Hasaninejad, Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran. E-mail: ahassaninejad@yahoo.com; or Ab-dolkarim Zare, Department of Chemistry, Payame Noor University (PNU), Bushehr 1698, Iran. E-mail: abdolkarimzare@yahoo.com

on the synthesis of sulfonamide derivatives^{3–5} as well as green organic synthesis,^{3–5,22–27} herein we report an efficient method for the preparation of *N*,*N*-dialkylsulfonamides *via aza*-conjugate addition of sulfonamides to α , β -unsaturated esters in the presence of KF and tetrabutylammonium bromide (TBAB) under microwave irradiation in the absence of solvent (*Scheme 1*).

$$PhSO_2NH_2 + \underbrace{KF (25 \text{ mol}\%), TBAB}_{CO_2Bu} \xrightarrow{KF (25 \text{ mol}\%), TBAB} PhSO_2N(CH_2CH_2CO_2Bu)_2}_{14 \text{ min}}$$

Scheme 1

The *aza*-conjugate addition of benzenesulfonamide (2 mmol) to *n*-butyl acrylate (4.4 mmol) in the presence of different molar ratios of KF and TBAB (1 mmol) at range of 100–500 W of microwave power (max. 130°C) (*Scheme 1*) was studied in order to determine the optimal conditions with respect to molar ratio of the reagent to the substrate and microwave power. The data summarized in *Table 1* indicates that reasonable results were obtained when the reaction was carried out using 25 mol% KF at 300 W of microwave power. Under these conditions, only *N*,*N*-dialkylsulfonamide was produced in 98% yield, and no mono-*N*-alkylated product was formed. The reaction was also examined in the absence of KF; however, these conditions were not efficient (*Table 1*). In fact, this reaction requires a base to abstract a proton from the amino group of the sulfonamide thus generating the nucleophile to attack the β -carbon of the α , β -unsaturated compound.^{16,21,28–30} In this study, it was found that potassium fluoride can efficiently serve as the base.^{16,21,28–30}

To assess the efficiency of microwave heating in comparison with conventional heating, the reaction of benzenesulfonamide (2 mmol) with *n*-butyl acrylate (4.4 mmol) in the presence of KF (25 mol%) and TBAB (1 mmol) was examined in an oil-bath (130°C). Under these conditions, the selectivity decreased and the *N*,*N*-dialkyl and *N*-alkyl sulfonamides were obtained in 87 and 6% respectively after 3 hrs. Thus, microwave irradiation has an

Molar Ratio of KF (mol%)	MW Power (W)	Time (min)	Yield (%)		
			N,N-Dialkylated Product	N-Alkylated Product	
0	300	30	7	29	
15	300	20	84	10	
25	300	14	98		
35	300	11	98		
25	100	25	47	23	
25	200	20	73	15	
25	400	9	96	_	
25	500	5	90	_	

 Table 1

 Influence of Ratios of KF to the Substrate and Microwave Power in the Presence of TBAB

Entry		Time (min)	Yield (%)			
	Solvent		N,N-Dialkyl Product	N-Alkyl Product		
1	DMSO	18	82	9		
2	DMF	18	94	4		
3	HMPTA	20	79	7		
4 ^a	Solvent-free	14	98	_		
5 ^b	Solvent-free	25	19	12		
6 ^c	Solvent-free	14	73	Trace		

Comparative Reaction between Benzenesulfonamide and n-Butyl Acrylate using KF in
Various Solvents versus the Solvent-Free Method under Microwave Irradiation

Table 2

^aSolvent-free conditions in the presence of TBAB.

^bSolvent-free conditions without TBAB.

^cSolvent-free conditions using TBAF.

essential influence on the progress and the selectivity of the aza-conjugate addition reaction. In another study, the effectiveness of the solvent-free method versus solution conditions was investigated (*Table 2*). For this purpose, a mixture of benzenesulfonamide (2 mmol), *n*-butyl acrylate (4.4 mmol), KF (25 mol%) and TBAB (1 mmol) was irradiated in a microwave oven (300 W, max. 130°C) in various solvents (4 mL). Higher yield of the *N*,*N*-dialkylated product in shorter reaction times were obtained in the solvent-free conditions. The reaction was also examined in the absence of TBAB under solventless conditions; however, these conditions were not efficient (see *Table 2*, *Entry 5*). Thus, the presence of TBAB in the reaction is necessary. In general, TBAB melts at 100°C and solubilizes the reactants.^{5,25,31} Moreover, this quaternary ammonium salt absorbs the microwave irradiation and increases the reaction temperature.^{5,25} Moreover, the reaction of benzenesulfonamide with *n*-butyl acrylate was checked using tetrabutylammonium fluoride (TBAF) without KF under solvent-free conditions at 300 W (max. 130°C). Under these conditions, the product was obtained in 73% after 14 min (*Table 2, Entry 6*).

To evaluate the efficiency and potency of our method with respect to the reported methods for the synthesis of N,N-dialkylsulfonamides via aza-conjugate addition reaction, we have tabulated the results of the reported methods for the synthesis of N,N-di(3-carbo-n-butoxyethyl)benzenesulfonamide in *Table 3*. Clearly, in comparison with the reported methods, our method significantly improved the synthesis of N,N-dialkylated sulfonamides via aza-conjugate addition reaction.

To determine the generality and scope of the method, the reaction was examined with different sulfonamides and α , β -unsaturated esters (*Table 4*). The reactions proceeded efficiently and the desired conjugate adducts were obtained in good to excellent yields in short reaction times. The nature of the alkoxy group of α , β -unsaturated esters had a negligible effect on the reaction results (*Entries 1–8*). With sterically hindered ethyl methacrylate, lower yields were obtained even under prolonged reaction times (*Entries 9* and *10*) while with ethyl crotonate, only the *N*-monoalkyl product was isolated in 92%

the reported methods compared to Present Method					
Entry	Reagent	Time (min)	Yield (%)	Ref.	
1	KF	14	98	Present Work	
2	ZnO	5	9	3	
3	MgO	5	7	4	
4	K_2CO_3	5	16	5	
5 ^a	PBu ₃	1080	52	6	

 Table 3

 Synthesis of N,N-di(3-carbo-n-butoxyethyl)benzenesulfonamide using the reported methods compared to Present Method

^aYield of N,N-dialkylsulfonamide from p-toluenesulfonamide and ethyl acrylate.

Table 4
Synthesis of <i>N</i> , <i>N</i> -Dialkylsulfonamides under Solvent-free and Microwave Irradiation

	$RSO_2NH_2 + X \xrightarrow{R^1 - R^2} \frac{KF (25 \text{ mol}\%), TBAB}{MW, 300 \text{ W}, 130 \text{ °C}} RSO_2N(CHR^1CHR^2X)_2$						
Entry	R	\mathbb{R}^1	\mathbb{R}^2	Х	Time (min)	Yield (%)	m.p. (lit.)
1^{a}	C ₆ H ₅	Н	Н	CO ₂ CH ₂ CH ₃	27	96	Oil (Oil) ³
2	C_6H_5	Н	Н	CO ₂ CH ₂ (CH ₂) ₂ CH ₃	14	98	Oil (Oil) ³
3	C_6H_5	Н	Н	CO ₂ CH ₂ (CH ₂) ₄ CH ₃	14	97	Oil (Oil) ³
4	C ₆ H ₅	Η	Н	CO ₂ CH ₂ C ₆ H ₅	15	97	Oil (Oil) ⁴
5	C ₆ H ₅	Η	Н	CO ₂ CH ₂ CH ₂ C ₆ H ₅	17	97	Oil (Oil) ⁴
6	C_6H_5	Н	Η	$CO_2CH_2CH = CHC_6H_5$	18	95	Oil (Oil) ⁴
7	p-CH ₃ C ₆ H ₄	Н	Η	$CO_2CH_2(CH_2)_2CH_3$	17	97	Oil (Oil) ⁵
8	p-CH ₃ C ₆ H ₄	Η	Н	CO ₂ CH ₂ C ₆ H ₅	18	95	Oil
9 ^b	C ₆ H ₅	Η	CH_3	CO ₂ CH ₂ CH ₃	20	79	Oil (Oil) ⁵
10 ^b	p-CH ₃ C ₆ H ₄	Н	CH_3	CO ₂ CH ₂ CH ₃	20	77	Oil
11 ^c	C ₆ H ₅	CH_3	Н	CO ₂ CH ₂ CH ₃	30	—	_
12		Н	н		14	97	Oil
12				$CO_2CH_2(CH_2)_2CH_3$	14	97 64	Oil
15 14 ^d	CH ₃	Н	Н	$CO_2CH_2CH_2C_6H_5$	20		
14- 15 ^d	p-CH ₃ C ₆ H ₄	H H	H H	CN COCH ₃	30 30	39 Trace	97–99 (102–104) ⁶
15- 16 ^d	C ₆ H ₅	н Н	н Н	CHO CHO	30 30	Trace	_
10 ^e	C ₆ H ₅ C ₆ H ₅	H H	н Н	CONH ₂	30 30	_	

^aBecause of lower boiling point of ethyl acrylate, this reaction was performed at 100°C (300 W of microwave power); moreover, in this case, ethyl acrylate/benzenesulfonamide ratio (mol/mol) was 2.5/1.

^bThis reaction was carried out at 400 W (max. 140° C), and in this case, 100 mol% of KF and TBAB were used.

^cIn this reaction, only mono-*N*-alkyl product was produced in 92%.

^dThis reaction was carried out in a capped vessel at 100°C, and α , β -unsaturated compound/benzenesulfonamide ratio (mol/mol) was 3/1.

^eThis reaction was examined at 120°C.

yield after 30 min (*Entry 11*). *p*-Toluenesulfonamide and 2-naphthylsulfonamide afforded the expected products in excellent yields (*Entries 7, 8, 10* and *12*). Moreover, the method was successful for *N*,*N*-dialkylation of alkysulfonamides (*Entry 13*). The method was also examined for the reaction of sulfonamides with α , β -unsaturated nitriles, ketones, aldehydes and amides. As *Table 4* indicates, while acrylonitrile gave the corresponding *N*,*N*dialkylsulfonamide in moderate yield (*Entry 14*), the reaction was not successful with other α , β -unsaturated compounds (*Entries 15–17*). One of the most interesting properties of KF is its ease of recycling. The yields of *N*,*N*-di(3-carbo-*n*-butoxyethyl)benzenesulfonamide (model compound) in the 2nd and 3rd and 4th uses of the reagent were nearly as high as in the first use.

In summary, we have developed a new method for the synthesis of *N*,*N*-dialkylsulfonamides via *aza*-conjugate addition of sulfonamides to α , β -unsaturated esters promoted by microwave irradiation. The advantages of this method are generality, high yield, high selectivity, short reaction time, low cost, ease of product isolation, and agreement with the green chemistry protocols.

Experimental Section

All chemicals were purchased from Merck or Fluka Chemical Companies. All known compounds were identified by comparison of their spectral data with those in the authentic samples. All reactions were carried out using laboratory microwave oven (MW 3000, Landgraf Company, Germany). IR spectra were run on a Shimadzu FTIR-8300 spectrophotometer. The ¹H NMR (250 MHz) and ¹³C NMR (62.5 mhz) were run on a Bruker Avance DPX-250, FT-NMR spectrometer. Microanalysis was performed on a Perkin-Elmer 240-B microanalyzer. Mass spectra were recorded on a Shimadzu GC MS-QP 1000 EX apparatus.

General Procedure for the Synthesis of N,N-Dialkylsulfonamides

To a well-ground mixture of the sulfonamide (2 mmol), KF (0.029 g, 0.5 mmol) and TBAB (0.322 g, 1 mmol) in a microwave vessel was added the α , β -unsaturated ester (4.4 mmol) and mixed thoroughly with a glass rod (the microwave vessel was open). The resulting mixture was irradiated in a microwave oven at 300 W at a maximum internal temperature of 130°C (the internal reaction temperature was measured by a sensor that was inserted in the reaction mixture). After each 4 min, the microwave irradiation was stopped and the reaction mixture was rapidly mixed with a glass rod. After completion of the reaction monitored with TLC, the reaction mixture was cooled to room temperature and suspended in EtOAc (40 mL), filtered to separate the reagent and the filtrate was washed with water (2 × 60 mL) and dried with MgSO₄. The solvent was evaporated and the crude product was purified by short column chromatography on silica gel eluted with EtOAc, dried and used for the next run under identical reaction conditions.

N,*N*-**Di**(3-carbethoxyethyl)benzenesulfonamide (*Table 4, Entry 1*): Colorless oil, (lit.³ oil); IR (neat): 3028, 2984, 1733, 1447, 1317 cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, *J* = 7.1 Hz, 6H, 2CH₃), 2.59 (t, *J* = 5.0 Hz, 4H, 2O=CCH₂), 3.45 (t, *J* = 5.0 Hz, 4H, 2O=CCH₂CH₂), 4.08 (q, *J* = 7.1 Hz, 4H, 2OCH₂), 7.46–7.57 (complex, 3H, H₃-H₅ of the

aromatic ring), 7.87 (m, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 13.9, 32.8, 44.7, 60.4, 127.2, 129.1, 132.6, 138.9, 170.9; MS (m/z): 357 (M⁺).

N,*N*-**Di**(3-carbo-*n*-butoxyethyl)benzenesulfonamide (*Table 4, Entry 2*): Colorless oil, (lit.³ oil); IR (neat): 3036, 2966, 1732, 1447, 1317 cm⁻¹; ¹H NMR (CDCl₃): δ 0.92 (t, *J* = 6.5 Hz, 6H, 2CH₃), 1.33 (m, 4H, 2CH₃CH₂), 1.56 (m, 4H, 2CH₃CH₂CH₂), 2.63 (t, *J* = 5.1 Hz, 4H, 2O=CCH₂), 3.45 (t, *J* = 5.1 Hz, 4H, 2O=CCH₂CH₂), 4.06 (t, *J* = 6.9 Hz, 4H, 2OCH₂), 7.51–7.60 (complex, 3H, H₃-H₅ of the aromatic ring), 7.82 (m, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 13.5, 18.9, 30.5, 34.2, 44.4, 64.2, 126.9, 129.0, 132.4, 138.9, 171.1; MS (m/z): 413 (M⁺).

N,*N*-Di(3-carbo-*n*-hexyloxyethyl)benzenesulfonamide (*Table 4, Entry 3*): Colorless oil, (lit.³ oil); IR (neat): 3031, 2974, 1733, 1447, 1316 cm⁻¹; ¹H NMR (CDCl₃): δ 0.89 (t, J = 6.6 Hz, 6H, 2CH₃), 1.26–1.32 (complex, 12H, 2CH₃CH₂, 2CH₃CH₂CH₂ and 2CH₃(CH₂)₂CH₂), 1.58 (m, 4H, 2CH₃(CH₂)₃CH₂), 2.61 (t, J = 5.0 Hz, 4H, 2O=CCH₂), 3.41 (t, J = 5.0 Hz, 4H, 2O=CCH₂CH₂), 4.05 (t, J = 6.9 Hz, 4H, 2OCH₂), 7.43–7.50 (complex, 3H, H₃-H₅ of the aromatic ring), 7.74 (m, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 13.8, 22.3, 25.5, 28.0, 30.4, 33.9, 44.5, 64.4, 126.4, 128.9, 132.1, 139.4, 171.4; MS (m/z): 392 (M⁺-C₆H₅), 368 (M⁺-C₆H₁₃O), 328 (M⁺-C₆H₅SO₂).

N,*N*-**Di**(3-carbobenzyloxyethyl)benzenesulfonamide (*Table 4, Entry 4*): Pale yellow oil, (lit.⁴ oil); IR (neat): 3051, 2965, 1734, 1447, 1316 cm⁻¹; ¹H NMR (CDCl₃): δ 2.58 (t, J = 5.0 Hz, 4H, 2O=CCH₂), 3.36 (t, J = 5.0 Hz, 4H, 2O=CCH₂CH₂), 5.00 (s, 4H, 2OCH₂), 7.22–7.25 (complex, 10H, 2C₆H₅CH₂), 7.39–7.48 (complex, 3H, H₃-H₅ of the aromatic ring of sulfonamide moiety), 7.72 (m, 2H, H₂ and H₆ of the aromatic ring of sulfonamide moiety); ¹³C NMR (CDCl₃): δ 33.3, 43.9, 65.5, 126.2, 127.7, 128.1, 128.9, 129.5, 131.8, 134.4, 137.8, 171.4; MS (m/z): 404 (M⁺-C₆H₅), 340 (M⁺-C₆H₅SO₂).

N,*N*-Di(3-carbophenethyloxyethyl)benzenesulfonamide (*Table 4, Entry 5*): Pale yellow oil, (lit.⁴ oil); IR (neat): 3045, 2942, 1733, 1447, 1331 cm⁻¹; ¹H NMR (CDCl₃): δ 2.51 (t, *J* = 5.2 Hz, 4H, 2O=CCH₂), 2.82 (t, *J* = 6.9 Hz, 4H, 2ArCH₂), 3.30 (t, *J* = 5.2 Hz, 4H, 2O=CCH₂CH₂), 4.19 (t, *J* = 6.9 Hz, 4H, 2OCH₂), 7.10–7.19 (complex, 10H, 2C₆H₅CH₂), 7.42–7.45 (complex, 3H, H₃-H₅ of the aromatic ring of sulfonamide moiety), 7.78 (m, 2H, H₂ and H₆ of the aromatic ring of sulfonamide moiety); ¹³C NMR (CDCl₃): δ 34.3, 34.9, 44.9, 65.2, 126.6, 126.7, 126.9, 128.6, 128.8, 129.2, 132.8, 137.5, 171.0; MS (m/z): 432 (M⁺-C₆H₅), 388 (M⁺-C₈H₉O), 368 (M⁺-C₆H₅SO₂).

N,*N*-Di(3-carbocinnamyloxyethyl)benzenesulfonamide (*Table 4, Entry 6*): Pale yellow oil, (lit.⁴ oil); IR (neat): 3026, 2981, 1732, 1448, 1317 cm⁻¹; ¹H NMR (CDCl₃): δ 2.51 (t, *J* = 5.1 Hz, 4H, 2O=CCH₂), 3.41 (t, *J* = 5.1 Hz, 4H, 2O=CCH₂CH₂), 4.73 (m, 4H, 2OCH₂), 6.15 (m, 2H, 2PhCH = CH), 6.54 (d, 2H *J* = 15.7 Hz, PhCH), 7.28–7.36 (complex, 10H, 2C₆H₅CH₂), 7.41–7.47 (complex, 3H, H₃-H₅ of the aromatic ring of sulfonamide moiety), 7.94 (m, 2H, H₂ and H₆ of the aromatic ring of sulfonamide moiety); ¹³C NMR (CDCl₃): δ 33.8, 43.2, 65.4, 122.4, 123.0, 126.7, 126.9, 127.9, 128.5, 129.4, 132.4, 134.1, 139.3, 171.5; MS (m/z): 392 (M⁺-C₆H₅SO₂).

N,*N*-Di(3-carbo-*n*-butoxyethyl)-*p*-toluenesulfonamide (*Table 4, Entry 7*): Pale yellow oil, (lit.⁵ oil); IR (neat): 3056, 2975, 1734, 1317 cm⁻¹; ¹H NMR (CDCl₃): δ 0.92 (t, *J* = 6.9 Hz, 6H, 2CH₂CH₃), 1.32 (m, 4H, 2CH₃CH₂), 1.57 (m, 4H, 2CH₃CH₂CH₂), 2.42 (s, 3H, ArCH₃), 2.63 (t, *J* = 5.2 Hz, 4H, 2O=CCH₂), 3.43 (t, *J* = 5.2 Hz, 4H, 2O=CCH₂CH₂), 4.02 (t, *J* = 7.0 Hz, 4H, 2OCH₂), 7.31 (d, *J* = 7.9 Hz, 2H, H₃ and H₅ of the aromatic

ring), 7.72 (d, J = 7.9 Hz, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 13.6, 19.0, 21.4, 30.4, 33.9, 45.0, 64.5, 126.9, 129.5, 135.9, 143.5, 172.5; MS (m/z): 427 (M⁺).

N,*N*-Di(3-carbbenzyloxyethyl)-*p*-toluenesulfonamide (*Table 4, Entry 8*): Pale yellow oil; IR (neat): 3056, 2971, 1734, 1316 cm⁻¹; ¹H NMR (CDCl₃): δ 2.38 (s, 3H, ArCH₃), 2.60 (t, J = 5.2 Hz, 4H, 2O=CCH₂), 3.39 (t, J = 5.2 Hz, 4H, 2O=CCH₂CH₂), 5.04 (s, 4H, 2OCH₂), 7.18–7.22 (complex, 10H, 2C₆H₅CH₂), 7.34 (d, J = 7.9 Hz, 2H, H₃ and H₅ of the aromatic ring of sulfonamide moiety), 7.74 (d, J = 7.9 Hz, 2H, H₂ and H₆ of the aromatic ring of sulfonamide moiety); ¹³C NMR (CDCl₃): δ 22.2, 33.7, 44.5, 65.8, 126.3, 127.1, 128.3, 129.0, 129.9, 134.9, 135.6, 143.1, 171.9; MS (m/z): 340 (M⁺-C₇H₇SO₂).

Anal. for C₂₇H₂₉NO₆S: C, 65.44; H, 5.90; N, 2.83. Found: C, 65.63; H, 6.04; N, 2.71.

N,*N*-**Di**(3-carbethoxy-2-methyethyl)benzenesulfonamide (*Table 4, Entry 9*): Pale yellow oil, (lit.⁵ oil); IR (neat): 3042, 2982, 1732, 1447, 1316 cm⁻¹; ¹H NMR (CDCl₃): δ 1.09–1.19 (complex, 12H, 4CH₃), 2.78 (m, 2H, 2O=CCH), 3.22–3.27 (complex, 4H, 2O=CCH₂CH₂), 4.03 (q, *J* = 7.0 Hz, 4H, 2OCH₂), 7.44–7.53 (complex, 3H, H₃-H₅ of the aromatic ring), 7.75 (m, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 14.1, 15.3, 39.2, 52.4, 60.7, 127.3, 129.1, 132.7, 139.0, 174.7; MS (m/z): 385 (M⁺).

N,*N*-Di(3-carbethoxy-2-methyethyl)-*p*-toluenesulfonamide (*Table 4, Entry 10*): Pale yellow oil; IR (neat): 3057, 2973, 1733, 1447, 1316 cm⁻¹; ¹H NMR (CDCl₃): δ 1.12–1.24 (complex, 12H, 4CH₃), 2.44 (s, 3H, ArCH₃), 2.73 (m, 2H, 2O=CCH), 3.25–3.31 (complex, 4H, 2O=CCH₂CH₂), 4.10 (q, *J* = 7.0 Hz, 4H, 2OCH₂), 7.33 (d, *J* = 7.8 Hz, 2H, H₃ and H₅ of the aromatic ring), 7.76 (d, *J* = 7.8 Hz, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 13.9, 15.0, 22.7, 39.4, 51.2, 61.2, 126.6, 129.7, 136.1, 142.95, 172.1; MS (m/z): 399 (M⁺).

Anal. for C₁₉H₂₉NO₆S: C, 57.12; H, 7.32; N, 3.51. Found: C, 56.87; H, 7.21; N, 3.65. *N*,*N*-Di(3-carbo-*n*-butoxyethyl)-2-naphthylsulfonamide (*Table 4, Entry 12*): Pale yellow oil; IR (neat): 3046, 2981, 1732, 1448, 1327 cm⁻¹; ¹H NMR (CDCl₃): δ 0.90 (t, J = 6.6 Hz, 6H, 2CH₃), 1.36 (m, 4H, 2CH₃CH₂), 1.57 (m, 4H, 2CH₃CH₂CH₂), 2.52 (t, 4H, J = 5.1 Hz, 2O=CCH₂), 3.43 (t, 4H, J = 5.1 Hz, 2O=CCH₂CH₂), 4.06 (t, 4H, J =7.0 Hz, 2OCH₂), 7.49–7.55 (complex, 4H), 7.76–7.78 (complex, 3H); ¹³C NMR (CDCl₃): δ 13.7, 19.1, 30.2, 33.6, 44.8, 64.8, 122.1, 128.0, 127.7, 128.0, 128.2, 128.5, 128.9, 129.1, 129.6, 132.3, 171.8; MS (m/z): 390 (M⁺-C₄H₉O), 272 (M⁺-C₁₀H₇SO₂).

Anal. for C₂₄H₃₃NO₆S: C, 62.18; H, 7.17; N, 3.02. Found: C, 62.01; H, 7.05; N, 3.18. *N*,*N*-Di(3-carbophenethyloxyethyl)methanesulfonamide (*Table 4, Entry 13*): Pale yellow oil; IR (neat): 3061, 2973, 1732, 1446, 1329, 1161 cm⁻¹; ¹H NMR (CDCl₃): δ 1.67 (s, 3H, CH₃), 2.80–2.89 (m, 8H), 3.81–3.88 (m, 8H), 7.21-7.32 (complex, 10H, 2C₆H₅); ¹³C NMR (CDCl₃): δ 35.0, 35.2, 39.2, 63.7, 64.9, 126.6, 128.6, 129.0, 138.5, 170.6; MS (m/z): 368 (M⁺-CH₃SO₂).

Anal. for C₂₃H₂₉NO₆S: C, 61.72; H, 6.53; N, 3.13. Found: C, 62.01; H, 6.72; N, 2.97. *N*,*N*-Di(2-cyanoethyl)-*p*-toluenesulfonamide (*Table 4*, *Entry 14*): Pale yellow solid;
mp. 97–99°C (lit.⁶ 102–104°C); IR (KBr): 2947, 2253, 1599, 1337, 1159 cm⁻¹; ¹H NMR (CDCl₃): δ 2.43 (s, 3H, ArCH₃), 2.69 (t, *J* = 6.9 Hz, 4H, 2NCCH₂), 3.47 (t, *J* = 6.9 Hz, 4H, 2NCH₂), 7.30 (d, *J* = 7.9 Hz, 2H, H₃ and H₅ of the aromatic ring), 7.72 (d, *J* = 7.9 Hz, 2H, H₂ and H₆ of the aromatic ring); ¹³C NMR (CDCl₃): δ 18.9, 22.1, 45.6, 117.6, 127.2, 129.8, 135.3, 144.4; MS (m/z): 277 (M⁺).

Acknowledgements

We appreciate Persian Gulf University and Payame Noor University Research Councils for the financial support of this work.

References

- M. J. O'Neil, A. Smith, T. E. Heckelman and F. Dudavari, "Merck index: an encyclopedia of chemicals, drugs, and biologicals", 13th Ed., Merck: Whitehouse Station, NG, 2001.
- 2. A. Reitz, M. Verlander and M. Goodman, Tetrahedron Lett., 23, 751 (1982).
- A. Zare, A. Hasaninejad, A. R. Moosavi Zare, A. Parhami, H. Sharghi and A. Khalafi-Nezhad, *Can. J. Chem.*, 85, 438 (2007).
- 4. A. Zare, A. Hasaninejad, A. Khalafi-Nezhad, A. R. Moosavi Zare and A. Parhami, *ARKIVOC*, **xiii**, 105 (2007).
- 5. G. H. Imanzadeh, A. Zare, A. Khalafi-Nezhad, A. Hasaninejad, A.R. Moosavi Zare and A. Parhami, *J. Iran. Chem. Soc.*, **4**, 467 (2007).
- 6. C. Gimbert, M. Moreno-Maňas, E. Pérez and A. Vallribera, Tetrahedron, 63, 8305 (2007).
- 7. K. Tanaka, "Solvent-free Organic Synthesis", Wiley-VCH, GmbH and KGaA, Weinheim, 2004.
- 8. A. Loupy, "Microwave in Organic Synthesis", Wiley-VCH, Weinheim, 2006.
- 9. B. E. Blass, Tetrahedron, 58, 9301 (2002) (Review).
- R. Hosseinzadeh, Y. Sarrafi, M. Mohadjerani and F. Mohammadpourmir, *Tetrahedron Lett.*, 49, 840 (2008).
- M. S. Silva, R. G. Lara, J. M. Marczewski, R. G. Jacob, E. J. Lenardão and G. Perin, *Tetrahedron Lett.*, 49, 1927 (2008).
- 12. M. Boruah, D. Konwar and S. D. Sharma, Tetrahedron Lett., 48, 4535 (2007).
- 13. Y. Ge and L. Hu, Tetrahedron Lett., 48, 4585 (2007).
- F. Bazi, H. El Badaoui, S. Tamani, S. Sokori, L. Oubella, M. Hamza, S. Boulaajaj and S. Sebti, J. Mol. Catal. A: Chem., 256, 43 (2006).
- 15. M. Zahouily, B. Bahlaouan, A. Rayadh and S. Sebti, Tetrahedron Lett., 45, 4135 (2004).
- 16. A. K. Chakraborti, L. Sharma and M. K. Nayak, J. Org. Chem., 67, 2541 (2002).
- 17. M. K. Nayak and A. K. Chakraborti, Chemistry Lett., 297 (1998).
- 18. G. W. Kabalka, V. Namboodiri and Lei Wang, Chem. Commun., 775 (2001).
- 19. A. Kunai, T. Sakurai, E. Toyoda and M. Ishikawa, Organometallics, 15, 2478 (1996).
- 20. S.-I. Shoda, M. Moteki, R. Izumi and M. Noguchi, Tetrahedron Lett., 45, 8847 (2004).
- D. V. N. S. Rao, R. Dandala, C. Bharathi, V. K. Handa, M. Sivakumaran and A. Naidu, *ARKIVOC*, xv, 127 (2006).
- A. Khalafi-Nezhad, A. Parhami, A. Zare, A. R. Moosavi Zare, A. Hasaninejad and F. Panahi, Synthesis, 617 (2008).
- 23. A. Hsaninejad, A. Zare, H. Sharghi and M. Shekouhy, ARKIVOC, (xi), 64 (2008).

- 24. A. Hasaninejad, A. Zare, M. R. Mohammadizadeh and Mohsen Shekouhy, *ARKIVOC*, **xiii**, 28 (2008).
- 25. A. Zare, A. Hasaninejad, M. H. Beyzavi, A. Parhami, A. R. Moosavi Zare, A. Khalafi-Nezhad and H. Sharghi, *Can. J. Chem.*, **86**, 317 (2008).
- A. Zare, A. Hasaninejad, M. Shekouhy and A. R. Moosavi Zare, Org. Prep. Proced. Int., 40, 457 (2008).
- A. Zare, A. Parhami, A. R. Moosavi Zare, A. Hasaninejad, A. Khalafi-Nezhad and M. H. Beyzavi, *Can. J. Chem.*, 87, 416 (2009).
- 28. T. Ando, J. Yamawaki, T. Kawate, S. Sumi and T. Hanafusa, *Bull. Chem. Soc. Jpn.*, **55**, 2504 (1982).
- 29. A. Uritski and D. Huppert, J. Phys. Chem. A, 112, 4415 (2008).
- 30. M. Mąkosza and M. Fedoryński, ARKIVOC, iv, 7 (2006).
- 31. S. Mizuta, N. Shibata, M. Hibino, S. Nagano, S. Nakamura and T. Toru, *Tetrahedron*, **63**, 8521 (2007).